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A NOTE ON DISCRETE SOLUTIONS 
OF THE PLATEAU PROBLEM 

TAKUYA TSUCHIYA 

ABSTRACT. In this paper we prove theorems for convergence of discrete solu- 
tions of the Plateau problem under the assumption that the contour is rectifiable. 

1. INTRODUCTION 

In [7] the discrete solutions of the Plateau problem were defined, and some 
theorems for its convergence were proved under a very restrictive condition. 
The purpose of this paper is to show that we can obtain the same conclusions 
if the contour is rectifiable. 

It is well known [2, pp. 107-118] that the Plateau problem can be defined as 
the following variational problem: 

Let D = {I(u, v) c R 2U2 + v2 < 1} be the unit disk with boundary AD 
and let F be a Jordan curve in n-dimensional Euclidean space R n n > 2. 
Let C(D; Rn) be the space of continuous maps from D into R , and let 
H (D; Rn) be the ordinary Sobolev space (for the exact definitions, see [7]). 
We define the class of maps by 

XI = {f E C(D; R ) n H' (D; Rn )If (OD) ='F7, f I&D is monotone}, 

where monotone means that, for each p E F, (flioD) 
- 

(p) C OD is connected. 
Xr- may be empty [4, p. 58], but if F is rectifiable, then Xr 7& 0 [2, pp. 129- 
131]. We choose six arbitrary distinct points z1, z2 Z3 c OD and ClI C2' C3 
F, and we define the subset of Xr by 

Xr = If E XrIf (zi) = Cix, i = 1, 2, 3}, 

where the superscript "tp" stands for "three-point condition". The Plateau prob- 
lem is to find stationary points of the energy functional 

E(f) = I )du A 

in XtpI where fu = (Ofi/&u, ..., f/0u) and fA,= (Of1/0v, ...f/Ov). 
The notation 1 means Euclidean norm. 

A solution of the Plateau problem is called a minimal surface spanned in F 
even if it is not a minimal point of the energy functional. For the existence of 
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the minimal surfaces the following theorem is known [2, pp. 10 1-105; 4, p. 71]: 

Theorem A (Douglas-Rado). Let er = inf{E(f): f E X'P}. If XP t 0, then 
there exists a map x E X'P such that E(x) = er. 

An x as in Theorem A is called a Douglas solution. Evidently, a Douglas 
solution is a minimal surface. 

In ?2 we define a (stable) discrete minimal surface using the simplest finite 
element scheme. In ?3 we prove the relative compactness of bounded subsets 
of discrete maps when the Jordan curve is rectifiable. In [7] a very restrictive 
condition was assumed to prove the relative compactness, so ?3 is the main part 
of this paper. 

2. DEFINITION OF THE DISCRETE MINIMAL SURFACE 

Let Q c D be a regular triangulation of D with Q = U K,, where K, are 
triangles. With the triangulation Q we associate the mesh size of Q defined 
by 

IQI = maxdiam(Ki). 

We assume that there exists a positive constant co which is independent of 
the triangulation Q such that the following inequality holds for each triangle 
K, C Q: 

(H 1 ) diam(K,)/p(Ki) :5 oj, 
where p(Ki) = sup{diam(S); K, D S: ball} . 

Let SQ be the set of functions which are continuous on Q and linear on 
each triangle K1. Let SQ be the set of maps from Q into Rn such that each 

component function belongs to SQ. Let NQ = {b1}7jN be the set of nodal 
points of Q where b1 E Q0, the interior of Q. for 1 < i < N and bEOQ 
for N + 1 < i < N + N'. We number {bN+l, I , bN+?N} = NQ rOD in 
counter-clockwise order. We assume that 

(H2) Q is of nonnegative type. 

For the definition of the term "nonnegative type", see [1, 7]. This assumption is 
for the discrete maximum principle [7, Lemma 3]. We introduce the admissible 
class of triangulations of D defined by 

A= {QZ'Z2, Z3 E NQ, Q satisfies (H1), (H2)}. 
When Q is given, we define 

XF Q = {f E SQIf (NQ n OD) C F, fa ID is d-monotone}, 

where d-monotone means that the order of nodal points on F is the same as 
the order of nodal points on OD. Let 

XrPQ ={ffEXrFQLf(z1)=C1, i=1,2,3}, 

and let EQ(f) be the energy functional on Q defined by 

E((f) 1ff( If 2+LJ2) dudv. 
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We extend f E SQ to D - Q as follows: 
If p E OQ and p 0 NQ, there exists an exterior normal half-line Lp of 

OQ on p . For arbitrary q E Lp n (D - Q), we define f (q) = f (p) . Then the 
following estimate is valid: 

EQ(f) < E(f) < (1 + CIQI)EQ(f) for any f E SQ 
where C is a constant which is independent of Q and f. 

Definition 1. Let Q E Atp . 

(DI) f E Xtp is a stable d-minimal surface if there exists a positive constant 

(5 such that Hf-glc(Q;Rn) < ( implies EQ(f) ? E.(g) for g E Xtp 

(D2) f E Xtp is the d-Douglas solution if EQ(f) = inf{EQ(g): g E Xtp Q}. 

3. RELATIVE COMPACTNESS 

First, we recall a useful lemma [2, pp. 101-102; 4, pp. 67-68]. For any 
z E R2 and any r > 0 we define 

Cr _ = Dn{w cR2: Iw-zI =r}. 

For f c XrP we denote by l(f, Cr,:) the length of the image f(Crz)* Let 
M be a constant with er < M. 

Lemma 2. For arbitrary (, 0 < 5 < 1, and f c Xtp? with E(f) < M, there 

exists p, ? < p < (5/2, depending on f and z such that 

(3.1) I(f , C Z)2<A(s, 

where A)(6) = 87rM/log(1/(1). 

For Q E Atp and f e XpQ we define 

L(Q, f) = max{ If(bl) - f(bl,+1)I: b, E N. n OD, i = N + 1,..., N + N}, 

where bN+N'+l = bN+l 'The following lemma is valid. 

Lemma 3. Let Atp D {Qn}n?'=l be such that limn-o< IQnI = 0, and let fn E 

Xr .* Suppose that F is rectifiable and E(fn) < M for any n. Then 

limnoo L(Qn, fn) = 0 
Proof. The proof is by contradiction. Assume that lim supno L(Q A, fn) > 0. 
Then there exists a positive constant -c such that, for any 4 > 0, there exist a 
positive integer m and b e N. n OD such that 

(3.2) Qn I < and I fm (b,)-fm (bi+ 1) I > ?C0 

For b, NQ n OD and c X . as in (3.2), a pair (a1,a2) (a1 

fm (NQ n OD), i = 1, 2) is said to be admissible if it satisfies the following 
properties: IF, one of the two connected components of F- {aI , a2}, contains 
at least two of {f, I2' C31, and the other connected component F2 contains 
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fn(bi) and fm(bi+ ) If { II C2' '3} n {fm(bi) , fm(bi+ i)} I 0, for example in 
the case of C, = fm(bi), a pair (Ca1, a2) such that (xl = C, = f"(bl) and F, 
contains at least one of { I I23 } and F2 contains f'm (bi+1) is also said to 
be admissible. 

By a topological argument we can show that there exists a positive constant I 
depending on {F, ] IC , I 3I and eo such that Ia1 -a21 ?> q foranyadmissible 
pairs (c1a C2) on F. 

Let bk, bh E NQ n AD be such that all of (fm(bk+p), fm(bh+q)) (p, q= 
0, 1) are admissible pairs. For b, E NQ n OD, we denote by seg(bj) the 
segment which connects fm (bj) and Am (bj+l). 

Lemma 4. Assume that there exist fl1 e seg(bk) and fl2 E seg(bh) such that 
1f1 - f21 < /2. Then we have 

(3.3) I/fn(bk)-fm(bk+l)l + lfm(bh)f m(bh+l)l > ho 

Proof. Since Ifm(bk+p) - fm(bh+q)l > q (p, q = 0, 1), we obtain (3.3) eas- 
ily. E 

Let /(F) be the length of F. Let A be the least integer that satisfies 

(3.4) 1(-0 < A. 

We take sufficiently small 6, 0 < ( < 1, such that 

(3.5) (2A - l)(A(j5))1/2 < q/2, 

(3.6) 2(A5'1/2 + Y(6)) < min{Iz1 - ZJI: i 

2A-Il where y((5) = ( . We set 4 = y(J) in (3.2), and we choose and fix a positive 
integer m and b1 E NQ n AD as in (3.2). Then we have 

2A-I 

(3.7) I~mn <(5 

Let z E OD be the center of the shorter arc blb1+l . By Lemma 2 there exists 

a positive constant p, (5 < p < 1/26 such that l(fMm, Cp, ) < AW()1/2 Let 11 
and r1 be the left and right endpoint of Cp, on AD, respectively. Suppose 

that E e bk b and r E b- bb where bk bh, eNn, n I k, +I 1 I h,+1 ,wee I b SD otta 
the pair (I'm(bk ), fin(bh )) is not admissible in the extraordinary case like Fig- 
ure 1. 

However, in such a case we can obtain a contradiction and prove this lemma 
immediately. Hence we may assume without loss of generality that all of the 
pairs (fm(bk?+p) Jfn(bh,+q)) (p, q = 0,1 ) are admissible because of (3.6). 
Note that, by (3.7), bk , bh and b, are distinct. From (3. 1) and (3.5) we have 
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O D 

_1 OD f =m (bl) = fm (bk) 

bk - 

/1 

bk+1 'P 

bi 
z 

b1+1 

bhl C bl _2 = fm(bl+,) =fm(bhi) 

FIGURE 1 

Ifin (1) - fin(rl)l < (r/2)/(2A - 1) < q/2. Thus, from Lemma 4, we obtain 

(3.8) Vfn(bk) fn(bk +l)1 + lfm(bh )fm(bh +1)1 > P7 

By Lemma 2 there exist positive constants 01, p2 < 01 < p, and u,u 
p2 < /1 < p (52? 01, /1 < 1/2), such that 

l(fn Cop) < A(p2)1/2 < ?A(6))/2 < P q(I C ) < ( 1 

Let 12 be the left endpoint of C., 1 and r2 the right endpoint of CA r . Let 

bk, bh c NQ nOD be nodal points such that 12 and r2 are on the arcs b b 
k2 

I 
h2 k~~~~~~~~~~~~~~~~~~~~~~2 k2-41 

and bh bh ,I respectively. Again, we may assume that all pairs (fm(bk +p), 

ftn(bh2+q)) (p, q = 0, 1) are admissible because of (3.6). By (3.7), bk, bh 

(j = 1, 2) and b, are distinct. From (3.1) and (3.5) we have Ifm(l2)-fm(r2)1 < 

3(q/2)/(2A - 1) < q/2. Thus, by Lemma 4 and (3.8), we obtain 

2 

E(Lf;ln(bk) - fin (bk +) 1 + Ifin(bh)) - 
fin(bh) +1 )) > 2P7. 

J=1 

Repeating this procedure A times, we conclude that there exist 2A distinct 
nodal points on OD such that 

A 

(3.9) (Lfll (bk -fn( (bk +l)1 + Vf~n(bh -fin(b +,1?)| > AP7. 
J=4 
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By (3.4) the right side of (3.9) is greater than 1(F) - -co. Thus we obtain 

N+N 
/ 

l(F) > E Ifm (bi) -fm(bi+1 )I 
1=N+1I 

A 

> Z(Ifm(bki) fin (bk,+l)I + Iffm(bhj) - fm(bh,+l)I) + %0 > 0(F) 
J=1 

This is a contradiction, hence Lemma 3 is proved. fl 

Corollary 5. Let AtP D { '} =I be such that limie IQnj = 0, and let fn E 

Suppose that F is rectifiable and E(f,) < M for any n . Then, for any 
e > 0, there exist 3 > 0 and positive integer n1 such that 

Is-tI < a implies Ifn(s)-fn(t)I < c, 

for any s,tUzD and n>n1. 

Proof. By a topological argument we can show that, for any e with 0 < e < 

min{Ci - jI: i :A j}, there exists r > 0 such that, if I1a -a2j < a a2 e F, 
then the diameter of the smaller connected component of F - {a ', a2 } is less 
than e. 

Suppose that e > 0 is given and z > 0 is chosen in the above manner. 
By Lemma 3 there exists a positive integer ni such that L(Qn n fn) < z/3 
for all n > ? 1. We choose 3 > 0 such that A(3)1/2 < T/3 and 2631/2 < 
min{1z1 - zjI: i t j}j. By Lemma 2, for any s E AD, there exists p, ? < p < 
3 1/2 depending on s, 3 and f", such that l(fn, Cp ,) < T/3. Let 1, r E AD 
be the left and right endpoints of Cp, and let bi, b1 E NQ nOD be such that I 

and r are on the arcs bib i+I and bj -I b respectively. Since L(Qn , fn) < T/3, 
we obtain 

Ifn(bl) - fn(bj)I < Ifn(bi) - fn(l)I + Ifn(l) -n(r)I + Ifn(r) - fn(bj)I < T. 

Thus we conclude that the diameter of IF, the smaller connected component of 
F- {fn(bl) , fn(bj)}, is less than e, and, for any t E AD with Is - tI < 3s, fn(s) 
and fn(t) are in the convex hull of F, . Hence we obtain Ifn(s)-fn(t)I < e . ? 

Lemma 6. Let A'P D { I'} I?= be such that lim O IQ?,I = 0, and let fn e 

rPQn .ISuppose that F is rectifiable and E(fn) are uniformly bounded. Then 
there exists a subsequence {f n } such that fn '1OD converges uniformly to a con- 
tinuous map y E C(OD) on AD. Moreover, (OD) = F and y is monotone. 
Proof. The proof is similar to that of the Ascoli-Arzelk theorem. Let YVn = 
{(cos(27ri/n), sin(27ri/n)): i = 0, ..., n - I}, and let P = UO??=I yn . Since T 
is countable, we can number ' as ' = I 1, Y2... }. By the diagonal method 
we choose a subsequence {fn } such that, for each i, fn (yj) converges as 
n, x. 

Suppose that an arbitrary e > 0 is given. For this e we choose 3s > 0 and 
a positive integer nI as in Corollary 5. Let K be a positive integer such that 
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the length of an edge of the regular K-gon inscribed OD is less than 6, that is, 
2 sin(7i/K) < s. Let V1K = {fl ' * * * I OK}, and let n2 be a positive integer such 
that Ifn I (fk) - fn (4k) I< , for ni, n? > n2 and k = I, KK. For arbitrary 

s E AD there exists 4k E V1K such that Is - 1kI < (. Thus, by Corollary 5, we 
obtain 

Ifn(s)- fn (S)I < IAn (S) fn(4k)l + If(nk(4) -fn(4k)I + Ifn(4k) -fn(s)I < 3, 

for ni, n > no = max{nl, n2} . Since no is independent of s ,f fn } converges 

uniformly on OD. The last part of the lemma is obvious. n 

4. THEOREMS 

Using Lemma 6, we obtain the following theorems. The proofs of the theo- 
rems are quite similar to those of the theorems in [7]. 

Theorem 7. Suppose that F is rectifiable. Let Atp D {n}n?=1 be such that 

limn,-o IQn = 0, and let {x0 E Xr%}n1 be a sequence of the d-Douglas 

solutions. 
Then there exists a subsequence {xn } which converges to one of the Douglas 

solutions x E X'P in the following sense: 

(4.1) lim Ix Xn IIH'(D;Rn) = 0, 

and if x E W1 P(D; R n), p > 2, then 

(4.2) no lx IXXn fIC(T;Rn) = O_ 

If the Douglas solution is unique, then xn converges in the sense of (4.1) and 
(4.2). 

A harmonic map x c X"P is said to be an isolated stable minimal surface if 
there exists a constant ( such that 

0 < jjx -yiiCDiR') < ( implies E(x) < E(y) for y EXt . 

Theorem 8. Suppose that F is rectifiable. Let Atp :D {Qn}n=I be such that 

limn0 IJn I = 0, and let x E Xtp be an isolated stable minimal surface. Then 

there exists a sequence {x, E X tp }nil of stable d-minimal surfaces which 

converges to x in the sense of (4.1) and (4.2). 
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