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A NOTE ON DISCRETE SOLUTIONS
OF THE PLATEAU PROBLEM

TAKUYA TSUCHIYA

ABSTRACT. In this paper we prove theorems for convergence of discrete solu-
tions of the Plateau problem under the assumption that the contour is rectifiable.

1. INTRODUCTION

In [7] the discrete solutions of the Plateau problem were defined, and some
theorems for its convergence were proved under a very restrictive condition.
The purpose of this paper is to show that we can obtain the same conclusions
if the contour is rectifiable.

It is well known [2, pp. 107~118] that the Plateau problem can be defined as
the following variational problem:

Let D = {(u,v) € R*u* + v* < 1} be the unit disk with boundary 6D
and let T’ be a Jordan curve in n-dimensional Euclidean space R", n > 2.
Let C(D;R") be the space of continuous maps from D into R", and let
H I(D; R") be the ordinary Sobolev space (for the exact definitions, see [7]).
We define the class of maps by

X.={/feCD;R")nH (D;R")|f(®D) =T, f|,, is monotone},

where monotone means that, for each pe T, (f], D)_l (p) € 8D is connected.
X may be empty [4, p. 58], but if " is rectifiable, then X # @ [2, pp. 129~
131]. We choose six arbitrary distinct points z, z,, z;, € 9D and {,, {,, (5 €
I', and we define the subset of X by

XP={feXf(z) =8, i=1,2,3},

where the superscript “tp” stands for “three-point condition”. The Plateau prob-
lem is to find stationary points of the energy functional

EN =7 [ [15F+15,P dudv

in X\, where f, =(8/,/0u,...,8f,/0u) and f, = (81, /0v, ..., df,/0v).
The notation |-| means Euclidean norm.

A solution of the Plateau problem is called a minimal surface spanned in I
even if it is not a minimal point of the energy functional. For the existence of

Received March 30, 1987; revised February 1, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 49F10, 65E05, 65N30.

© 1990 American Mathematical Society
0025-5718/90 $1.00 + $.25 per page

131



132 TAKUYA TSUCHIYA

the minimal surfaces the following theorem is known [2, pp. 101-105; 4, p. 71]:

Theorem A (Douglas-Rado). Let ep = inf{E(f): f € X{'}. If X{ # &, then
there exists a map x € X{° such that E(x) = ep.

An x as in Theorem A is called a Douglas solution. Evidently, a Douglas
solution is a minimal surface.

In §2 we define a (stable) discrete minimal surface using the simplest finite
element scheme. In §3 we prove the relative compactness of bounded subsets
of discrete maps when the Jordan curve is rectifiable. In [7] a very restrictive
condition was assumed to prove the relative compactness, so §3 is the main part
of this paper.

2. DEFINITION OF THE DISCRETE MINIMAL SURFACE

Let Q c D be a regular triangulation of D with Q = UK, , where K, are
triangles. With the triangulation Q we associate the mesh size of Q defined
by

|| = maxdiam(K,).
1
We assume that there exists a positive constant « which is independent of
the triangulation Q such that the following inequality holds for each triangle
K, CcQ:
(H1) diam(K,)/p(K;) < @
where p(K,) = sup{diam(S); K, > S : ball}.

Let S, be the set of functions which are continuous on Q and linear on

each triangle K;. Let S, be the set of maps from Q into R" such that each

component function belongs to S,. Let Ny = {b, }N ¥ be the set of nodal
points of Q where b, € Q°, the interior of Q, for 1 <i < N, and b, € 9Q
for N+ 1< i< N+N. We number {b by, v} = NonoD in
counter-clockwise order. We assume that

N+l2 o

(H2) Q is of nonnegative type.

For the definition of the term “nonnegative type”, see [1, 7]. This assumption is
for the discrete maximum principle [7, Lemma 3]. We introduce the admissible
class of triangulations of D defined by

A® ={Q|z,, z,, z; € N,, Q satisfies (H1), (H2)}.
When Q is given, we define
Xr o ={f€Sulf(NgnaD) T, fl,,is d-monotone},

where d-monotone means that the order of nodal points on I'" is the same as
the order of nodal points on D . Let

FQ—{feX]“QIf(Z) I’ i=192,3}9
and let E(f) be the energy functional on Q defined by

Eq(f) = %//Q(|fu|2+|f”|2)dudv.
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We extend f €S, to D—Q as follows:

If pedQ and p ¢ N,, there exists an exterior normal half-line Lp of
0Q on p. For arbitrary g € L, N (D — Q) , we define f(q) = f(p). Then the
following estimate is valid:

Eo(f) SE(f) < (1+ CIQ|)Eg(f) forany f €S,
where C is a constant which is independent of Q and f.
Definition 1. Let Q € A
(D1) fe Xlt-p’ o 1sastable d-minimal surface if there exists a positive constant
¢ such that || f - gllog.gr < 9 implies Eq(f) < Eg(g) for g € XPq .
(D2) f€ Xy isthe d-Douglas solution if Eq(f) =inf{Eqy(g): g € X[ o}

3. RELATIVE COMPACTNESS

First, we recall a useful lemma [2, pp. 101-102; 4, pp. 67-68]. For any
zeR? and any r > 0 we define

C, .=Dn{weR’: lw-z|=r}.

For f € X{" we denote by /(f, C, .) the length of the image f(C, ). Let
M be a constant with e. < M.

Lemmia 2. For arbitrary 6, 0<d <1, and f € Xll.‘fg with E(f) < M, there
1z depending on f and z such that
(3.1) I(f,C, ) <20).

where A(6) = 8nM/log(1/d).

For Q€ A” and f e X, we define

exists p, 0 < p<d

L(Q, f) =max{|f(b) - f(b,)|: b,e NgndD, i=N+1,...,N+N'},

where by .., = by, . The following lemma is valid.

Lemma 3. Let A® > {Q }>° be such that lim,_,_|Q,| =0, and let f, €
Xll-'f Q- Suppose that T s rectifiable and E(f,) < M for any n. Then
lim,_ L(Q,, f,)=0.

Proof. The proof is by contradiction. Assume that limsup, ,  L(Q,, f,) > 0.
Then there exists a positive constant ¢, such that, for any £ > 0, there exist a
positive integer m and b, € N, n dD such that

[

(3.2) 1Q,| <& and |f,,(b) - f,,(b, )] >¢,.

For b, € N, NdD and f, € X’ asin (3.2), a pair (o, a,) (o €
f,(Ny NaD), i =1,2) is said to be admissible if it satisfies the following
proper't"ies: ', , one of the two connected components of I'—{«, , a,} , contains
at least two of {{,, {,, {;}, and the other connected component I', contains
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Su(b) and f (b, ). If {{,, &, &indf,(b), £,(b,)} # D, for example in
the case of {, = f, (b,), a pair (a,, a,) such that o, =, = f (b) and T,
contains at least one of {{,, {,, {5} and I', contains f (b, ,) is also said to
be admissible.

By a topological argument we can show that there exists a positive constant 7
dependingon {I', {,, {,, {5} and ¢, such that |a,—a,| > 7 for any admissible
pairs (a;, a,) on I’

Let b,, b, € N, N 0D be such that all of (f,,(b,,), f,,(6,.,) (P.g=
0,1) are admissible pairs. For b € N, NaoD, we denote by seg(b) the

segment which connects f, ( j) and S (b ; +1)

Lemma 4. Assume that there exist B, € seg(b,) and B, € seg(b,) such that
|8, — Byl < n/2. Then we have

(3.3) 150 (b)) = LBy DI+ 11, (by) = £ by DL > 1

Proof. Since lfm(bkﬂ,) Sl h+q)] >n (p,q = 0,1), we obtain (3.3) eas-
ily. O

Let /(") be the length of I". Let 4 be the least integer that satisfies
[(T) — ¢,
n
We take sufficiently small §, 0 < J < 1, such that

<A.

(3.4)

(3.5) (24 - 1)(A6)"* < n/2,

(3.6) 2(48'% + 9(8)) < min{|z, — z |1 i # j},

where y(J) = 52H . We set £ = y(d) in (3.2), and we choose and fix a positive
integer m and b, € N, N9D asin (3.2). Then we have

(3.7) Q, <o’ .

Let z € 8D be the center of the shorter arc b?’m . By Lemma 2 there exists

a positive constant p, d < p < 5", such that I(fys Cp'__) < /1(5)'/2. Let /,
and r, be the left and right endpoint of C . on 0D, respectively. Suppose

thatlebb - and r, eb b N wherebk,b € N, NdD. Note that

m

the pair (f), (b I ) (b, )) is not adm1ss1b1e in the extraordmary case like Fig-
ure 1.

However, in such a case we can obtain a contradiction and prove this lemma
immediately. Hence we may assume without loss of generality that all of the
pairs (fm(bk|+p) , fm(bhl+q)) (p,q = 0,1) are admissible because of (3.6).
Note that, by (3.7), b’\'; , bhl and b, are distinct. From (3.1) and (3.5) we have
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Cy = Jn(b) = Ju(by )

Cz = fm(b,.H) = fm(bhl)

FIGURE 1

I£, (1) = £,,(r)] < (n/2)/(24 = 1) < n/2. Thus, from Lemma 4, we obtain
(3.8) in(Bi) = LBy )+ 1o (B ) = oy )] > 1

By Lemma 2 there exist positive constants 6, , p2 <6, <p,and g,
pP<u <p (8°<0,, u <6"%), such that

2172 _ 1/2 n n
l(f’"’C01’/|)<l(p ) _1(6) < 2(2A—1)’ l(f’"’cl‘l”l)< 2(2A—1)‘
Let /, be the left endpoint of Cﬁl, I and r, the right endpoint of Cu e Let

b,\,2 , b € N, NdD be nodal points such that /, and r, are on the arcs b, zbk N
"l 2

and b b b1’ respectively. Again, we may assume that all pairs ( fm(bk2 )

- (bh + )) (p,q = 0, 1) are admissible because of (3.6). By (3.7), b, , b,

(= l 2) and b, are distinct. From (3.1) and (3.5) we have |f, (1,) - £, (r,)| <
3(n/2)/( — 1)< /2. Thus, by Lemma 4 and (3.8), we obtain

2
Z 1 Ox ) = SO oI+ 11(by ) = (B DD > 211

Repeating this procedure A times, we conclude that there exist 24 distinct
nodal points on 8D such that

(39) Zlf,,, )= b D+ 11 (8,) = (8, ) > A



136 TAKUYA TSUCHIYA

By (3.4) the right side of (3.9) is greater than /(I') — ¢,. Thus we obtain

N+N'

l(r)Z Z Ifm(b,‘)_fm(b,‘+1)|

1=N+1

(b ) = by )1+ 10y ) = (B, ) + > 1)

l\/Jm

2

J=1

This is a contradiction, hence Lemma 3 is proved. 0O
Corollary 5. Let A® > {Q, }°° be such that lim IQ,| =0, and let f, €

n—oo

X, “” o - Suppose that T is rectifiable and E(f,) < M for any n. Then, for any
€ >0, there exist 6 > 0 and positive integer n, such that ‘

|s—t|<d implies |f,(s)—f, ()] <e,
forany s,t€dD and n>n,.
Proof. By a topological argument we can show that, for any ¢ with 0 < ¢ <
min{|Ci—Cj| : i # j},thereexists 7 > 0 such that, if |, —a,| <7, @/, , €T,
then the diameter of the smaller connected component of I' — {«, , a,} is less
than ¢.

Suppose that ¢ > 0 is given and 7 > 0 is chosen in the above manner.
By Lemma 3 there exists a positive integer n, such that L(Q,, f) < 7/3
for all n > n,. We choose J > 0 such that 11(6)1/2 < 1/3 and 26'% <
min{|z, — Z,-l : i # j}. By Lemma 2, for any s € D, there exists p, d < p <
s'?, depending on s, J and f,, such that /(f,, C, < 7/3. Let [, redD
be the left and right endpoints of C R andlet b,, b ;€ Ng NOD be such that /

and r are on the arcs b/z\'bm and bj/_\lbj , respectively. Since L(Q,, f,) <1/3,

we obtain
1£,(b,) = £,(b ) < | £,(b;) = £ (DI + 11, (N +1£,(r) = £ (b)) < 7.
Thus we conclude that the diameter of T'; , the smaller connected component of

I—={/,(b), f,(b;)}, isless than &, and, for any 7 € 9D with ls—t <d, f,(s)
and f,(¢) are in the convex hull of I') . Hence we obtain |f,(s)—f,(f)| <&. O

Lemma 6. Let A® > {Q,}o2, be such that lim 1Q,| =0, and let f, €

n=1 n—oo

Xll-p‘Q . Suppose that T is rectifiable and E(f,) are uniformly bounded. Then
there exists a subsequence {f, } such that f, |,, converges uniformly to a con-
tinuous map ¢ € C(0D) on D . Moreover, p(0D) =T and ¢ is monotone.

Proof. The proof is similar to that of the Ascoli-Arzela theorem. Let y,
{(cos(2mi/n), sin(2mi/n)): i=0,...,n—1},andlet ¥ =, v, . Since ‘l’
is countable, we can number ¥ as ‘l’ {ry»75,...}. By the dlagonal method
we choose a subsequence { fn,} such that, for each i, f ’(yj) converges as
n — 0o. -

[ Suppose that an arbitrary ¢ > 0 is given. For this ¢ we choose § > 0 and
a positive integer n, as in Corollary 5. Let K be a positive integer such that
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the length of an edge of the regular K-gon inscribed 0D is less than ¢, that is,
2sin(n/K) < 8. Let y, ={&,..., ¢}, and let n, be a positive integer such
that |f, (&) - f, ()] <&, for n;, n; > n, and k=1,..., K. For arbitrary

J

s € 9D there exists & € y, such that |s —&,| <J. Thus, by Corollary 5, we
obtain

1, () = fy, O < 105 (5) = £, €O+ 155, &) = . @O +15, () = f, (9] < 3e.

for n,, n; > ny = max{n,, n,}. Since n, is independent of s, {f, } converges
uniformly on 8D . The last part of the lemma is obvious. O

4. THEOREMS

Using Lemma 6, we obtain the following theorems. The proofs of the theo-
rems are quite similar to those of the theorems in [7].

Theorem 7. Suppose that T is rectifiable. Let A® > {Qn}:';l be such that
lim,  _|Q,| =0, and let {x, € X{' }oo, be a sequence of the d-Douglas

n—oo n=1
solutions.
Then there exists a subsequence {x, } which converges to one of the Douglas

solutions x € X° in the following sense:

(4.1) Jim [ =, .y = 0

and if x € Wl”’(D;R"), p>2, then

(4.2) Jim fx = %, llep.e) = 0-

If the Douglas solution is unique, then x, converges in the sense of (4.1) and
(4.2).

A harmonic map x € Xl‘.p is said to be an isolated stable minimal surface if
there exists a constant J such that

0<llx=ylcp.pn <6 implies E(x)<E(y) forye Xy

Theorem 8. Suppose that T is rectifiable. Let A® > {Q 1} be such that
lim,_ _|Q,|=0,andlet x € X[® be an isolated stable minimal surface. Then
there exists a sequence {x, € Xll_"’Q ‘:;1 of stable d-minimal surfaces which

converges to x in the sense of (4.1) and (4.2).
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